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The subject of the paper is the stability of the thermocapillary flow generated by
an inclined temperature gradient. The investigation is carried out for water (Prandtl
number Pr = 7) in the limit of a vanishing Biot number. By means of the linear
stability analysis, the instability boundary of the return flow and the main instability
modes have been found. The evolution of the convective regimes predicted by the
linear stability theory and arising as a result of a nonlinear interaction has been studied
by a numerical simulation of three-dimensional governing equations. Hexagonal cells
differently oriented with respect to the main flow have been revealed as well as
roll-like and quadrangular patterns. Transitions between different convective patterns
occurring under changes of the governing parameters have been considered.

1. Introduction
Thermocapillary convective flows play the main role in shallow layers and under

microgravity conditions when other sources of convection turn out to be negligible.
The investigation of thermocapillary flows is a rapidly developing field that has a
wide spectrum of applications in engineering (microfluidics, crystal growth processes,
chemical engineering, coating, drying etc.). The investigation and prediction of possible
convective regimes is important for many natural and technological processes.

There are many works devoted to the investigation of thermocapillary convection
in a planar liquid layer. However, most of them consider either the case of heating
across the layer or the case of heating along the free surface. In the former case, we
observe a sequence of transitions between different convective patterns (for a review
see, e.g. Colinet, Legros & Velarde 2001; Nepomnyashchy, Velarde & Colinet 2001b).
In the latter case, the temperature gradient directed along the free surface generates
a thermocapillary flow. The stability of the thermocapillary convection caused by
the horizontal temperature gradient was considered by Smith & Davis (1983a, b),
Smith (1986) and Davis (1987) in the framework of the linear theory approach
(see also Smith 1988; Kuhlmann 1999). Besides longitudinal rolls, the existence of
oblique hydrothermal waves travelling upstream was predicted. The results of the
linear stability analysis were justified by the numerical simulations (Xu & Zebib
1998). The weakly nonlinear analysis of the hydrothermal waves was carried out by
Smith (1988). The stability of a parallel flow produced by the combined action of
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the thermocapillary effect and buoyancy was also investigated in detail (Parmentier,
Regnier & Lebon 1993; Priede & Gerbeth 1997).

Note that, in reality, it is difficult to guarantee that the temperature gradient is
directed strictly perpendicularly to the layer surface. It is reasonable to consider
the situation when the temperature gradient is inclined with respect to the surface.
This case is still much less explored. In our opinion, the influence of the longitudinal
temperature gradient on the arising convective structures has not yet been understood,
nor has the influence of the transverse temperature gradient on the stability of
thermocapillary flows.

In the case of the buoyancy convection, Weber (1978) considered the instability
of the convective shear flow under the action of an inclined temperature gradient,
using the linear stability approach. He found that depending on the horizontal and
vertical temperature gradient components, the flow lost its stability with respect to
disturbances having different forms. Specifically, longitudinal rolls aligned along the
basic flow, transverse travelling rolls and their oscillations, were predicted.

In the case of thermocapillary convection, some estimates that provide relations
between critical longitudinal and transverse temperature gradients in the case of the
linear flow have been obtained by Davis (1987). Nepomnyashchy, Simanovskii &
Braverman (2001a) considered the two-layer return thermocapillary flow in the
presence of an inclined temperature gradient. They found three instability modes by
means of the stability analysis, and performed two-dimensional nonlinear simulations.
The supercritical flow regimes in a layer with an inclined temperature gradient have
been studied in experiments by Ueno, Kurosawa & Kawamuro (2002). Hosoi &
Bush (2001) investigated evaporation-driven convection and studied the stability of a
solutocapillary flow in the presence of an inclined concentration gradient.

The goal of this paper is to clarify the action of the inclined temperature gradient
on the stability of a thermocapillary return flow and to study the three-dimensional
secondary convective regimes. The investigation is carried out for water (Prandtl
number Pr = 7) in the limit of a vanishing Biot number.

In § 2, the formulation of the problem and governing equations are presented.
Section 3 contains a linear stability analysis of the problem. In § 4, we investigate the
influence of a horizontal component of the temperature gradient on the convective
patterns near the instability threshold. In § 5, we give a brief description of the
numerical technique used for solving the governing equations. Section 6 is devoted to
the discussion of the results obtained by the numerical simulation.

2. Formulation of the problem
The system under consideration is the infinite plane layer of the viscous

incompressible liquid (figure 1). The liquid layer is characterized by the thickness d ,
kinematic viscosity ν, thermal diffusivity κ , density ρ and surface tension coefficient
which linearly depends on the temperature, σ = σ0 − γ T . The buoyancy is neglected,
and we assume that the thermocapillary force is the only force capable of initiating the
fluid motion. One boundary of the layer is assumed to be rigid, and it is maintained
at temperature T (x) = Tb + Ãx varied along the layer in the horizontal direction. The
other boundary represents a free undeformable surface, where the thermocapillary
force acts. The presence of the horizontal temperature gradient makes the motionless
state of the liquid impossible and the flow along the layer appears.
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Figure 1. Geometry of the system.

The fluid dynamics is governed by the Navier–Stokes system, heat conductivity and
continuity equations:

∂tv + (v · ∇)v = −∇p

ρ
+ ν∇2v,

∂tT + (v · ∇)T = κ∇2T ,

∇ · v = 0,

−∞ < x < ∞, −∞ < y < ∞, 0 < z < d.


(1)

It is also required that the following boundary conditions should be met:

z = 0: vx = 0, vy =0, vz = 0, T = Tb + Ãx,

z = d: ρν∂zvx = −γ ∂xT , ρν∂zvy = −γ ∂yT , vz = 0, λ∂zT = −h(T − T∞(x)).

}
(2)

Here, λ is the heat conductivity coefficient, h is the heat transfer coefficient, T∞ is
the temperature of the gas at a large distance from the liquid surface. The vertical
component of the velocity equals zero on both boundaries, the no-slip condition for
velocity is taken on the bottom boundary and the condition which takes into account
the thermocapillary force is set on the surface. We also define linear distribution
of temperature on the bottom, and the law of heat transfer on the top boundary.
We shall assume that T∞(x) = T̃ + Ãx, where T̃ is constant, i.e. T∞(x) has the same
horizontal temperature gradient as the temperature field on the rigid boundary z = 0.

Turning to the dimensionless variables, we use the layer thickness d as the length
scale, ν/d as the velocity scale, d2/ν as the time scale, ρν2/d2 as the pressure scale;
νδT /κ is the temperature scale, where δT = hd(Tb − T̃ )/(λ+ h d) is the difference
between the temperatures on the boundaries in the absence of the horizontal tem-
perature gradient, i.e. for the conduction temperature profile. Our system has the
following set of dimensionless parameters:

Ma =
γ δT d

ρνκ
, Pr =

ν

κ
, Bi =

hd

λ
, A = Ã

d

PrδT
,

which are Marangoni number, Prandtl number, Biot number and dimensionless
horizontal temperature gradient, respectively.

Taking into account two components of the applied temperature gradient, it is
convenient to present the temperature field in the following way:

T (x, y, z, t) − Tb

PrδT
= Θ(x, y, z, t) − z

Pr
+ Ax,
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where Θ(x, y, z, t) is the deviation from the linear conductive temperature field. The
dimensionless boundary-value problem is as follows:

∂tv + (v · ∇)v = −∇p + ∇2v, (3)

∂tΘ + v · ∇(Θ − Pr−1z + Ax) = Pr−1∇2Θ, (4)

∇ · v = 0, (5)

−∞ < x < ∞, −∞ < y < ∞, 0 < z < 1;

z = 0: vx = vy = vz = 0, Θ = 0; (6)

z = 1: ∂zvx = −Ma ∂xΘ, ∂zvy = −Ma ∂yΘ, vz = 0, ∂zΘ = −BiΘ. (7)

The problem (3)–(6) has an exact solution corresponding to a parallel return flow (see
Smith & Davis 1983a; Birikh 1966)

vx = U0(z) = 1
2
Ma A(z − 1.5z2), vy = vz = 0,

Θ0(z) = 1
4
Ma A2Pr

(
1
3
z3 − 1

4
z4

)
− Ma A2Pr Bi

48(Bi + 1)
z,

p = Bx = − 3
2
Ma Ax.

 (8)

The term ‘return flow’ means that the fluid flux along the layer vanishes:∫ 1

0

U0(z) dz = 0.

3. Linear stability analysis
In the present section, we develop the linear stability theory of the flow (8). This

theory suggests some predictions as to the arising convective regimes. It gives the
stability boundary of the return flow with respect to the disturbances in the form of
rolls and travelling waves.

Unlike the case of zero temperature gradient A, owing to the anisotropy of the
problem under consideration there is a certain preferred direction along which the
perturbations grow most rapidly. This direction can be inclined with respect to the
direction of the main return flow. In order to find this direction, it is necessary to
calculate the marginal stability surface. Stability analysis has been performed in this
paper similarly to the analysis given by Nepomnyashchy et al. (2001a) for a two-layer
system.

To study the stability of the return flow we linearize the system defined by (3)–(6)
around the stationary solution (8), and assume that the infinitesimal disturbances form
a normal mode. Also we perform the transformation of coordinates x = X cos(α) +
Y sin(α), y = −X sin(α) + Y cos(α), assuming that kx = k sin(α), ky = k cos(α), where
k =(kx, ky). After that transformation, the vector k becomes directed along the Y -axis
and the disturbances do not depend on X. Now the basic flow and perturbations of
the variables have the following form:

Θ = Θ0(z) + AX cos(α) + AY sin(α) + θ̃(z) exp(ikY + λt),

p = BX cos(α) + BY sin(α) + p̃(z) exp(ikY + λt),

vX = U0(z) cos(α) + ṽX(z) exp(ikY + λt),

vY = U0(z) sin(α) + ṽY (z) exp(ikY + λt),

vz = ṽz(z) exp(ikY + λt).
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Figure 2. (a) marginal curves at A = 0.022 for travelling rolls with α = 90◦, (lines (i), (ii))
and for stationary rolls with α = 0◦ (line (iii)); (b) marginal curves for hydrothermal waves
(A = 0.03, line (iv); A = 0.035, line (v)) and for stationary rolls with α = 0◦ (A =0.03, line (vi);
A = 0.035, line (vii); A = 0.0398, line (viii)).

The continuity equation ikṽY (z) + ṽ
′
z(z) = 0 makes it possible to introduce the stream-

function ṽz = −ikψ , ṽY =ψ
′
for the flow in the (Y, z)-plane. We obtain the following

eigenvalue problem describing the stability of the return flow (the tilde is omitted):

(ψ ′′′′ − 2k2ψ ′′ + k4ψ) − ik sin(α)[U0(ψ
′′ − k2ψ) − ψU0

′′] − λ(ψ ′′ − k2ψ) = 0,

λvX + ikU0 sin(α)vX − ikψU0
′ cos(α) = v′′

X − k2vX,

λθ + vXA cos(α) + ikU0ψ
′ sin(α) sin(α)θ − ikψθ ′

0 = Pr−1(θ ′′ − k2θ − ikψ);

 (9)

z = 1: v′
X = ψ = ψ ′′ + Ma ik θ = θ ′ + Bi θ = 0,

z = 0: vX = ψ = ψ ′ = θ = 0.

}
(10)

The eigenvalue problem is solved in the following way. The eigenfunction is con-
structed as a linear combination of the linearly independent solutions of (9) and
(10) satisfying the boundary conditions at z = 0. The solutions are found numerically
using the Runge–Kutta integration scheme. The boundary conditions at z = 1 lead
to a linear homogeneous algebraic system which has non-trivial solutions if the real
and the imaginary parts of its determinant D(λ; k, Ma, Pr, Bi) = Dr + iDi vanish. The
conditions Dr = Di = 0 determine the real and the imaginary parts of the eigenvalue λ
as function of other parameters. Actually, for fixed values of k, Pr and Bi we search the
marginal value of Ma such that the eigenvalue λ is purely imaginary, λ= iω. The values
of ω and Ma that ensure Dr =Di = 0 are found by the Newton method. The com-
putation has been done with Pr = 7 and Bi =0.

In order to investigate the stability of the flow, first we have to obtain the marginal
curves Ma(k) corresponding to fixed values of the angle α and of the horizontal tem-
perature gradient A. The results correspond to different kinds of instabilities. The mar-
ginal curves can contain disconnected and closed fragments. Some typical examples
of marginal curves are shown in figure 2. Curves (i) and (ii) in figure 2(a) are drawn
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Figure 3. Map of the return flow stability. Solid lines: (i) instability boundary with respect
to stationary longitudinal rolls α = 0◦, up to B; (ii) travelling rolls with α = 90◦, between the
points B and C; (iii) oblique hydrothermal waves α = αc , from the point C and further to the
right. Dashed line: instability boundary of travelling rolls with α = 90◦ in the region where
the instability is caused by the longitudinal rolls. Points a − l correspond to the same points
in figure 2.

at the value of the horizontal temperature gradient A= 0.022 for travelling rolls
with α = 90◦. Curve (iii) is the instability boundary of the stationary longitudinal
rolls with α = 0◦. Both curve (iv) corresponding to the oblique hydrothermal wave
with α = αc(A), which provides the lowest minimum value of Ma, and curve (vi)
corresponding to the stationary longitudinal rolls, in figure 2(b) have been obtained
at the value of the horizontal temperature gradient at A= 0.03. Curve (v) (oblique
hydrothermal wave), and curve (vii) (stationary longitudinal rolls) present the corres-
ponding instability boundaries at A= 0.035. Curve (viii) is the marginal curve for
stationary longitudinal rolls at A= 0.0398. The instability domain is contained inside
the closed curves (ii) and (iii) of figure 2(a) and curves (vi), (vii) and (viii) of figure 2(b).
Then we find the maximum and the minimum points of marginal curves (critical
Marangoni numbers) corresponding to different kinds of instabilities (e.g. points c and
b on curve (ii), figure 2a and points f, i, h, e on curves (vii) and (viii) of figure 2b)
and construct the full stability diagram of the return flow (see figure 3) in the plane
of parameters (Mac, A, critical Marangoni number versus horizontal temperature
gradient).

Figures 2 and 3 mutually correspond to each other. The minimum and maximum
points in figure 2 belong to various parts of the whole instability boundary in figure 3.
All the curves in figure 3 presenting the instability boundary of the return flow have
already been minimized with respect to the angle α and the wavenumber kc.

Curve (i) in figure 3 presents the instability boundary for longitudinal rolls α = 0◦

(solid line). At point B , this curve crosses the instability boundary for travelling
rolls with α =90◦. Below point B , the instability boundary for rolls with α = 90◦

is shown as a dashed line. Instability boundaries for other modes having arbitrary
angles 0◦ <α < 90◦ are located inside the instability region. Below point B , the return
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flow instability is first produced by the longitudinal rolls. As the horizontal gradient
approaches point A= 0, minima of marginal curves for different α merge at the point
Mac = 79.6, kc =2 which corresponds to the result of Pearson (1958).

Curve (ii) in figure 3 between points B and C is the instability boundary for the
travelling rolls with α = 90◦. Point J is the extreme left point of this boundary. We
can see that for horizontal gradient values less then AJ (corresponding to the point
J in figure 3), instability occurs for any point above line (i). For values in the range
AJ < A < AL, there is a gap of stability for a parallel flow. In this range, the transition
to the convection occurs in different ways, depending on A. As an example, consider
the section at A= 0.03 (dot-dashed line between the points d and f in figure 3). If
we enhance Ma maintaining the constant value of A, then, at Ma = Maf , the parallel
flow becomes unstable with respect to the stationary longitudinal rolls (point f on
curve (vi), figure 2b). With the further increase of the temperature difference across
the layer, the parallel flow is restabilized at Ma = Mae (point e in figure 3 and point
e on curve (vi), figure 2b) and remains stable up to Ma = Mad (point d , figure 3 and
point d on curve (iv), figure 2b). Here the flow loses stability with respect to inclined
hydrothermal waves with α �= 0 moving upstream. In figures 3 and 2(a) also, points
a, b and c are shown presenting the section at A= 0.022 under increasing Marangoni
number and fixed temperature gradient. The analogous points g, h and i present the
section at A= 0.035 in figures 3 and 2(b). The shape of the instability boundary shows
that for temperature gradient values exceeding AL, Pearson’s instability mechanism
is suppressed and transition to convection occurs through hydrothermal waves only.
This instability boundary (curve (iii) in figure 3) is plotted for the angle α = αc,
which minimizes the critical Marangoni number. This curve starts from point C and
continues up to infinity, A → ∞. The critical angle αc at point C is αc = 31◦ at points
d and g it is 37.4◦ and 40.1◦, respectively, and at the point where A= 0.06 it is
αc =47.1◦.

Summarizing the results of the linear stability analysis, we can see that for relatively
small values of the horizontal temperature gradient, Pearson’s instability mechanism
takes place and stationary convective rolls appear. The axes of these rolls are ordered
along the basic flow. The instability boundary of this mode starts from the point with
zero temperature gradient and extends to point B , where the instability boundary
turns into another mode which corresponds to the rolls ordered perpendicularly to
the direction of the basic flow. These rolls move in the direction of the flow on the
surface, thus they are travelling rolls. At point C and further on in the direction
of increasing horizontal temperature gradient, the instability with respect to oblique
hydrothermal waves becomes most dangerous. These waves propagate in the direction
opposite to the direction of the flow on the surface. The latter kind of instability was
investigated by Smith & Davis (1983a) in the limit 1/A → 0.

One of the shortcomings of the linear theory is that it cannot predict patterns
different from rolls. It is known that, in the absence of the horizontal gradient of
the temperature A, the hexagonal cells are the first patterns which appear from the
motionless state. We can expect that this kind of pattern may develop at least for
sufficiently small values of the horizontal temperature gradient A. Also, the linear
theory is unable to predict the type of bifurcation (supercritical or subcritical).

4. Weakly nonlinear regimes
In the present section, we shall consider the weakly nonlinear regimes of convection

under the action of a small horizontal temperature gradient A. First, let us discuss the
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linear growth of disturbances. In the absence of the horizontal temperature gradient
A= 0, the growth rate of the disturbances is real and does not depend on the direction
of the wavenumber k: σ = σ (k2). When the temperature gradient A ex is applied, the
function σ = σ (k, Aex) is complex and it can be presented as a function of scalar
invariants k2, Ak · ex , A2. Taking into account the relation σ (k, Aex) = σ ∗(−k, Aex),
which can be established from the analysis of the linearized problem, we find that for
small A

σr (k, Aex) = σ (0)
r (k2) + A2

[
σ

(2)
1 (k2) + σ

(2)
2 (k2)(k · ex)

2
]
+ O(A4), (11)

σi(k, Aex) = A(k · ex)σ
(1)
1 (k2) + O(A3). (12)

Let us consider now the weakly nonlinear regimes. It is well known that in the case
A= 0, a hexagonal pattern is developed near the instability threshold (Palm 1960)
which is described by three amplitudes a1, a2, a3 corresponding to wave vectors k1,
k2, k3, |kj | = kc, j = 1, 2, 3; k1 + k2 + k3 = 0. Let us consider the hexagonal pattern at
A �= 0. Under the assumption of weak quadratic interaction, the nonlinear evolution
of amplitudes can be described by a simple model system of amplitude equations
which contains both quadratic and cubic coefficients (Scanlon & Segel 1967):

∂ta1 = σ (k1, A)a1 + δa∗
2a

∗
3 − |a1|2a1 − κ(|a2|2 + |a3|2)a1.

The other equations are obtained by a cyclic permutation of the subscripts 1, 2, 3. To
leading order, small A does not influence the coefficients of the nonlinear interaction,
but we have to take into account the dependence of the growth rate on A, which will
be presented as follows,

σ (kj , A) = Γ + iα(kj · ex)A − β(k · ex)
2A2,

where Γ = σ (0)
r (k2) + A2σ

(2)
1 (k2), α = σ

(1)
1 (k2) and β = −σ

(2)
2 (k2). According to the results

of the previous section, β > 0, i.e. the disturbance with the wavevector orthogonal
(i.e. the roll axis parallel) to the direction of the horizontal temperature gradient A

(longitudinal rolls) has a larger growth rate than the disturbance with the wave vector
along (i.e. the roll axis across) that direction (transverse rolls). It is remarkable that
because of the condition k1 + k2 + k3 = 0, the imaginary part of the growth rate can
be fully eliminated by the transformation

aj = a′
jexp(iα(kj · ex)A t).

Omitting the prime, we obtain the amplitude equation:

∂ta1 = Γ1a1 + δa∗
2a

∗
3 − |a1|2a1 − κ(|a2|2 + |a3|2)a1, Γ1 = Γ − β(k1 · ex)

2A2.

Other equations can be obtained by the permutation of subscripts. Note that the
system of amplitude equations for perfect hexagons (|kj | = kc) in the presence of a
horizontal temperature gradient A is formally equivalent to the system of amplitude
equations for non-equilateral hexagons (|kj | �= kc, but k1 + k2 + k3 = 0) studied by
Malomed, Nepomnyashchy & Nuz (1994).

As a basic example, let us consider the hexagonal pattern with the angles between
kj and ex equal to 90◦, 210◦ and −30◦ (pattern H1, see figure 14). Rescale the variables
in the following way: aj = āj δ, j = 1, 2, 3, Γ = γ δ2, ∂t = δ2∂t̄ , βA2 = Ā2δ2. Omitting the
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Figure 4. Bifurcation diagram for the cases (a) Ā = 0, κ = 3, β = 1; (b) Ā = 0.1, κ = 3, β =1.
Solid (dashed) lines correspond to stable (unstable) patterns.

bar sign over āj , the system of the amplitude equations is written as follows:

∂ta1 = γ a1 + a∗
2a

∗
3 − |a1|2a1 − κ(|a2|2 + |a3|2)a1,

∂ta2 = γ a2 + a∗
1a

∗
3 − |a2|2a2 − κ(|a1|2 + |a3|2)a2 − 3

4
Ā2a2,

∂ta3 = γ a3 + a∗
1a

∗
2 − |a3|2a3 − κ(|a1|2 + |a2|2)a3 − 3

4
Ā2a3.

 (13)

Later on, we shall assume that amplitudes aj are real; that corresponds to the correla-
tion of phases, typical for hexagonal patterns. System (13) has many stationary solu-
tions. The solution a1 = a2 = a3 = 0 corresponds to the trivial state of the parallel flow.

Solutions a1 =
√

γ , a2 = a3 = 0; a2 =
√

γ − 3/(4Ā2), a1 = a3 = 0 and a3 =
√

γ − 3/(4Ā2),
a1 = a2 = 0 correspond to stationary rolls of different orientation. The solutions with
all the amplitudes different from zero correspond to hexagonal patterns. For the sake
of simplicity, we shall term as ‘hexagonal pattern’ the pattern with all the amplitudes
a1, a2 and a3 different from zero, though the actual shape of this pattern can be rather
different from the usual hexagons if a1 �= a2 (see Malomed et al. 1994).

In the absence of the horizontal temperature gradient (Ā= 0 in (13)), the behaviour
of the solutions and competition between hexagons and rolls are well known and
shown in figure 4(a). Line r presents the roll solution with γ − a2

1 = 0 and a2 = a3 = 0;
line h presents the hexagons described by the relations γ = a2

1(1 + 2κ) − a1 and
a1 = a2 = a3. Hexagonal patterns appear in a subcritical way and are stable within the
interval

γ1 = − 1

4(1 + 2κ)
< γ < γ3 =

κ + 2

(κ − 1)2
.

The roll solutions are stable for γ larger then γ2 = 1/(κ − 1)2. As γ >γ2, there is also
an unstable solution with a1 = 1/(κ − 1) and a2 = a3 �=0 which connects branches of
hexagonal patterns and rolls (dashed line in figure 4a, black dots correspond to γ1, γ2

and γ3). We can see that there are two multistability domains. The first is located
within the interval γ1 < γ < 0 where the parallel return flow and the hexagons are
stable; the second one is within the interval

γ2 < γ < γ3,

where depending on the initial conditions, we can obtain a hexagonal pattern or rolls
as t → ∞. In these domains, hysteretical transitions are possible with the change of γ .

Let us consider now the case with the horizontal temperature gradient different
from zero, Ā �= 0 in (13) (figure 4b). The orientation of the wave vector across the
direction of gradient Ā is preferable and this circumstance leads to a distortion of
the hexagonal structure. Because of the symmetry of system (13), there exists a class
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Figure 5. Amplitude branches for cases (a) Ā = 0.5, κ = 1.3, β = 1;
(b) Ā = 0.999, κ = 1.3, β = 1.

of solutions with a1 �= a2 = a3, for which the stationary system (13) reads

γ a1 + a2
2 − a3

1 − 2κa2
2a1 = 0,

γ − 3
4
Ā2 + a1 − a2

2 − κ
(
a2

1 + a2
2

)
= 0.

These two equations can be rewritten as

a2
2 =

γ a1 − a3
1

2κa1 − 1
, (14)

γ + a1 − γ a1 − a3
1

2κa1 − 1
(1 + κ) − κa2

1 − 3
4
Ā2 = 0. (15)

Typical amplitude curves in the space (a1, a2, γ ) are shown in figure 5. Typical
projections of these curves onto the planes (a1, γ ) and (a2, γ ) are shown in figures 4(b)
and 6. We can see that unlike the case of Ā= 0, the amplitude curve a1 of the hexagonal
patterns (lines h) bifurcates from the amplitude curve of the roll (lines r) at point B

(which does not coincide with the origin) and at point D. The projections of the lines
h and r onto the plane (a1, γ ) (see figure 4b and the right-hand column in figure 6)
can cross at point C. We can see that at relatively small values of Ā different from
zero, both the multistability domains mentioned above remain. However, now, the
first domain (to the left of point B) can contain, besides stable hexagonal patterns,
both the stable parallel return flow (on the interval of the γ -axis under curve h, to
the left of point B in figure 4b) and the stable roll solutions (on curve r under branch
h to the left of point B in figure 6(b) depending on the value of Ā, which deforms
the hexagonal branch h. Note that hexagons are stable only in the part of curve h

where ∂a2/∂γ > 0. For more detail about the stability of hexagonal patterns governed
by the amplitude equations (13), see Malomed et al. (1994).

Let us discuss the change of the hexagonal branch h which occurs with the change
of the temperature gradient Ā. Consider the bifurcation of the hexagonal pattern
from the rolls in more detail. We expand all the variables in (14) around the roll
solution:

a2 = εa
(1)
2 + ε2a

(2)
2 + · · · ,

a1 =
√

γ0 + εa
(1)
1 + ε2a

(2)
1 + · · · ,

γ = γ0 + εγ1 + ε2γ2 + · · · .
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In the zeroth order in ε, we can find two bifurcation points

√
γ0± =

1±
√

1 − (κ − 1)3Ā2

2(κ − 1)
,

where the hexagonal pattern with a2 = a3 �= 0 appears from the roll solution a1 =
√

γ0.

In the second order in ε, we can obtain the correction [a(1)
2 ]2 = γ2P , where the sign of

P =
−2γ0 − √

γ0 + 2κγ0

−2γ0(1 + κ) + (2κ
√

γ0 − 1)2
,

is responsible for the bifurcation type. We can see that P changes the sign at the
point

(
√

γ0)± =
1

2κ±
√

2(1 + κ)
,

which corresponds to the horizontal temperature gradient values

Ā2
± =

4

3

κ + 1±
√

2(1 + κ)

2κ±
√

2(1 + κ)
.

The sign (+) corresponds to the left bifurcation point B , the sign (−) corresponds to
the right point, D. Therefore, we can conclude that for the temperature gradient value
Ā < Ā+, the correction P is negative for the left B and right D bifurcation points,
and subcritical bifurcations take place there. This is demonstrated in figures 6(a) and
6(b) where we can see that at the bifurcation point B , ∂2γ /∂a2

2 < 0 and the hexagonal
solution branches off to the left from point B . For the interval Ā+ < Ā< Ā−, the
correction P > 0 for the left bifurcation point B . This is the supercritical case and
∂2γ /∂a2

2 > 0 here (curve h goes to the right from point B , figure 6c, points B and C

almost merged in figure 6d). However, for the right point D, the bifurcation remains
subcritical (curve h goes to the right from point D, figure 6c, d). For the gradient
values Ā > Ā−, both points have a supercritical bifurcation type: points B and D in
figure 6e, f . The hexagonal branch h turns out to be stable, whereas the roll branch
r is unstable for the values of γ corresponding to the interval between points B

and D.
This brief consideration leads to the conclusion that the presence of the horizontal

temperature gradient Ā breaks down the symmetry of the problem. The hexagonal
patterns typically have amplitudes a1 �= a2 = a3. In a certain region of Ā, Ā> Ā+, the
first multistability domain for hexagons and return flow or roll patterns disappears;
but the second multistability domain remains. Under the temperature gradient
increasing beyond the value Ā= Ā−, we can observe the continuous transition between
stable rolls and a stable hexagonal pattern. Increasing the horizontal temperature
gradient Ā, we can remove the region of the hysteretical transitions. We should note
that only the first multistability domain is of practical interest because the second
domain of the restabilization of rolls is usually outside the validity region of the
amplitude equations (13).

5. Numerical method
In this section, we briefly describe the numerical technique used for solving the

system of governing equations and boundary conditions (3)–(7). For this purpose, we
eliminate the pressure using the decomposition of the velocity field into poloidal Φ
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Figure 6. Bifurcation diagrams for the cases (a, b) Ā = 0.4, κ = 1.3, β = 1; (c, d) Ā = 0.7,
κ = 1.3; (e, f ) Ā = 1.05, κ = 1.3. The left-hand column shows variation of the amplitude a2.
The curves h in the right-hand column present the variation of the amplitude a1. The curve r
is the roll amplitude a1 =

√
γ . Solid (dashed) lines correspond to stable (unstable) patterns.

and toroidal Ψ parts

v(x, y, z, t) = ∇ × (∇ × ezΦ(x, y, z, t)) + ∇ × ezΨ (x, y, z, t) + U (z)ex + V (z)ey

=
(
Φxz + Ψy + U, Φyz − Ψx + V, −∇2

hΦ
)
,

where U (z) and V (z) are the components of the mean flow along the x- and y-
directions, respectively. Then the boundary problem (3)–(7) can be presented in
the variables of the vertical velocity vz = −∇2

hΦ , the vertical vorticity wz = −∇2
hΨ ,

the temperature deviation θ(x, y, z, t) and the two mean horizontal components of
velocity U (z, t) and V (z, t):

∂twz − ez · ∇ × (v × w) = ∇2wz,

∂t∇2vz + ∂z∇ · (v × w) − ez · ∇2(v × w) = ∇4vz,

Pr(∂tθ + (v · ∇)θ) = ∇2θ + vz − PrAvx,

∂tU + ∂z〈vxvz〉xy = ∂2
z U − 〈∂xp〉,

∂tV + ∂z〈vyvz〉xy = ∂2
z V − 〈∂yp〉,


(16)

where ∇2
h = ∂2

x + ∂2
y is the horizontal Laplacian, 〈f 〉xy is the horizontal average of

f (x, y, z). System (16) was being solved by using the pseudospectral technique des-
cribed by Canuto et al. (1987) and Boeck (2000). The periodic boundary conditions
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f (x, y, z) = f (x + lx, y, z), f (x, y, z) = f (x, y + ly, z), were imposed along the two
horizontal directions. Conditions on the boundaries of the layer are:

z = 1: ∂2
z vz − Ma∇2

hθ = vz = ∂zωz = ∂zθ + Biθ = ∂zU + MaA = ∂zV = 0,

z = 0: vz = θ = ∂zvz = ωz = U = V = 0.

}
(17)

The conditions of the zero fluid flux,
∫ 1

0
U (z) dz = 0 and

∫ 1

0
V (z) dz = 0, are achieved

by adjusting the terms of pressure gradient 〈∂xp〉 and 〈∂yp〉. The solution of the
problem (16), (17) is approximated using the presentation of variables vz(x, y, z, t),
wz(x, y, z, t) and θ(x, y, z, t) in the series

θ(x, y, z, t) =

Nx/2−1∑
m=−Nx/2

Ny/2−1∑
n=−Ny/2

Nz∑
p=0

θ̂ (p,m,n)(t)Tp(2z − 1) exp(i(mkxx + nkyy)), (18)

where Tp(2z − 1) are Chebyshev polynomials.
All calculations were performed with a constant time step which varied in the range

2 × 10−2 − 10−4 for different flows. We considered the convective flow as a steady
state when the quantity ε = |f n − f n−1|/max(|f n|, |f n−1|) was less than 10−6 − 10−7,
depending on the complexity of the regime. Usually, we used the Nusselt numbers
as the function f . Typically, it took several dimensionless time units to achieve the
steady state; in the vicinity of the bifurcation points, it took, a few dozen time units.
We used a computed convective regime as an initial state for the following one that
was calculated for other values of the parameters. As a rule, in our simulations, we
moved (in the plane of parameters Ma, A) in the direction from the regime with larger
amplitude toward the flow with lesser amplitude of the convective motion. Usually,
this direction coincided with the direction toward the nearest boundary of the stability
domain. In the case of an oscillating convective flow, we carried out averaging quantity
f over several time periods.

Details of the code validation are presented in the Appendix.

6. Results of numerical simulation
6.1. Roll patterns

We start the consideration of convective regimes with observations of the nonlinear
features of the roll patterns that are predicted by the stability analysis developed in
§ 3. As we have mentioned above, the presence of the horizontal component of the
temperature gradient breaks the rotational symmetry of the problem. As a result, we
can expect that nonlinear features of the rolls directed along and across the main flow
will be different. First, consider the nonlinear competition of these two modes only.
For this purpose, we have performed simulations in a computation domain suitable
for mutual coexistence of rolls with α = 0◦ and rolls with α =90◦. Spatial scales of
the domain were chosen as lx = 2π/kx , ly =2π/ky where kx and ky were taken on
the corresponding marginal curves. The results of calculations are shown in figure 7
where the characteristic forms of the amplitude curves for these two kinds of rolls are
presented.

To characterize the intensity of the fluid motion, we chose the following integral
characteristics. The first of them is the kinetic energy of the fluid motion based on
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Figure 7. The bifurcation diagrams for the rolls. (a) Dependence of the energy of the flow
on the horizontal gradient A, α = 0◦, Ma = 850; (b) dependence of the Nusselt number on the
gradient A for the same values of Ma and α (spatial resolution 64 × 32 × 32); (c) dependence
of the energy of travelling rolls with α = 90◦, Ma = 1300 (triangles) and stationary longitudinal
rolls with α = 0◦, Ma = 1300 (squares); (d) Nusselt number for travelling rolls and for stationary
rolls (resolution 32 × 64 × 32).

the velocity fields and defined as

E =

1

Vxyz

∫ (
v2

x + v2
y + v2

z

)
dx dy dz∫

U0(z)
2 dz

− 1,

here, Vxyz is the volume of the computational domain, U0(z) the velocity profile of
the return flow. This quantity characterizes the difference between the kinetic energy
of the actual convective flow at the given parameter value and that of the parallel
return flow.

To characterize the convective heat transport across the liquid layer, we can
introduce the Nusselt number. We use the definition of Thual (1992),

Ñu = 1 + Pr2Nu,

where Nu is actually the convective correction to the total Nusselt number,

Nu = 〈vzθ〉xyz.
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Figure 8. The structure of the travelling rolls with α = 90◦, for parameters Ma = 1300 and
A = 0.0205. (a) temperature field θ (x, y, 1) in the plane x, y at z = 1; (b) Fourier spectrum;
(c) isotherms T (x, 0, z) in the plane x, z at y = 0; (d) isolines of the stream function ψ(x, 0, z).

Here,

〈f 〉xyz =
1

LxLy

∫ Lx

0

∫ Ly

0

∫ 1

0

f dx dy dz.

All the amplitude curves start with zero values of amplitudes at corresponding
instability boundaries. The squares in figure 7(a, b) present the stationary rolls with
α = 0◦, at Marangoni number Ma = 850 in the computation domain with kx = 3.2
and ky = 5 under different values of the temperature gradient. Figure 7(a) shows the
change in the kinetic energy of the fluid motion, figure 7(b) represents the change in
the heat transfer across the liquid layer with the change of the horizontal temperature
gradient A.

The integral characteristics for the travelling rolls (α = 90◦) drifting down the main
flow are presented in figure 7(c, d), (triangles). Also, these figures include the properties
of the longitudinal rolls with α = 0◦ (squares). Calculations have been made for Ma =
1300, and for the computational domain having horizontal size Lx = 2.12 (kx = 2.96)
and Ly = 1.05 (ky = 6). Simulations were started from the point (Ma = 1300, A= 0.022)
located on the instability boundary for rolls with α = 90◦ and extended in the direction
of decreasing temperature gradient values.

At point C, the travelling rolls (triangles) lose their stability and stationary rolls
with α =0◦ appear (squares). In figure 7(c), we can see that for values of A less then
AC , stationary rolls have higher energy than that of drifting rolls. When increasing
the temperature gradient A, the back transition to the longitudinal rolls occurs at
point B when stationary rolls disappear. Also, it can be seen that there is a range
of temperature gradient values AC < A < AB where, depending on the initial state,
two numerically stable regimes are reached. We cannot exclude the possibility that
one of the regimes is actually metastable, and a transition to another regime takes
place after a long time period. Generally, the stationary longitudinal rolls with α = 0◦

provide better heat transfer across the liquid layer than travelling rolls with α = 90◦

in the broad range of the values of temperature gradient less then A< 0.021.
The structure of the drifting rolls with α =90◦ is plotted in figure 8 for the fixed

time moment. This result is obtained for Ma =1300 and A= 0.0205. Figure 8(a)
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Figure 9. The bifurcation diagrams for the oblique hydrothermal waves. (a) Dependence of
the energy on gradient A; (b) dependence of the Nusselt number on gradient A. The spatial
resolution 64 × 64 × 32.

demonstrates isotherms of the temperature deviation θ(x, y, 1) on the surface of the
layer. They have the form of lines which are parallel to the y-axis and move from
right to left in the direction of the main flow.

To investigate the structure of the flows, later on we use the Fourier spectra of the
field θ(x, y, 1). Figure 8(b) presents the Fourier spectra of the roll pattern with α =90◦.

The vertical axis demonstrates the absolute values |̂̂θ (m,n)

| of harmonics included in
the series

θ(x, y, z = 1) =

Nx/2−1∑
m=−Nx/2

Ny/2−1∑
n=−Ny/2

̂̂
θ

(m,n)

exp(i(mkxx + nkyy)).

Here, m and n are the harmonics numbers in the x- and y-directions and kx = 2π/Lx ,
ky = 2π/Ly . The components with |m|, |n| � 5 only are shown in the Fourier spectra.
The central peak m = 0, n =0 presents the average distortion of the interfacial
temperature due to the convective flow. Its height is shown schematically because
it is much larger than other components.

Figure 8(c) demonstrates the total temperature field T (x, 0, z) in the vertical (x, z)-
plane. It is distorted mainly by the parabolic profile of the main flow. Isotherms on
the left-hand side are darker (colder) then on the right-hand side (lighter and hotter),
according to the direction of the applied horizontal temperature gradient. Figure 8(d)
shows isolines of the stream function ψ(x, 0, z) as a function of x, z (this function can
be defined in the plane orthogonal to the roll axis, because the velocity component
along the roll axis gives no contribution into the continuity equation).

6.2. Oblique hydrothermal waves

Now we turn to another kind of convective regime predicted by the linear theory.
The bifurcation diagrams showing the changes of the integral characteristics of the
oblique travelling waves moving upstream are presented in figure 9. Calculations
have been performed for the section in the parameter plane at Marangoni number
Ma= 1324.6 and for the computational domain with sizes Lx =7.7 and Ly =6.01.
According to the linear theory, in this domain, the waves appear with α = 38◦. The
size of the computational domain was twice as large as necessary for the simulation
of this convective pattern. Actually for waves with α = 38◦, the smallest domain has
Lx =3.85 (Lx = 2π/(kc sin α)), Ly =3 (Ly = 2π/(kc cos α)) for kc = 2.65. Unlike the case
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Figure 10. The structure of the oblique travelling waves for α =38◦, Ma = 1324.6 and
A = 0.042. (a) deviation temperature field θ (x, y, z = 1) on the surface; (b) Fourier spectrum;
(c) deviation temperature field θ (x, y = 0, z) in the plane x, z; (d) the vertical velocity
vz(x, y = 0, z); (e) the isotherms T (x, z, y = 0) in the plane x, z; (f ) stream function
ψ(x, y = 0, z).

of the rolls moving down the main flow (previous section), the energy of the hydro-
thermal waves grows with increasing horizontal temperature gradient (figure 9a).
Moreover, the dependence of the Nusselt number on the horizontal temperature
gradient (figure 9b) looks quite unusual: the convective correction to the Nusselt
number caused by the appearance of hydrothermal waves is negative, Nu< 0.

Because hydrothermal waves move upstream, they rearrange the temperature field in
the bulk of the fluid layer in a special way. The typical structure of the travelling waves
is shown in figure 10. The isotherms of the temperature deviation θ(x, y, 1) on the
layer surface are shown in figure 10(a). The Fourier spectrum is given in figure 10(b).
In order to explain the above-mentioned unusual property of the hydrothermal waves,
let us consider the field of the temperature deviation θ(x, 0, z) (figure 10c) and the field
of the vertical velocity vz(x, 0, z) in the plane y = 0 (figure 10d). Because of the roll
structure of the pattern, the distributions of θ and vz in any plane y =const are similar.
We can see that the maxima and minima of θ on the surface (at z = 1) are located
approximately above the corresponding maxima and minima of vz, i.e. the surface
temperature is relatively high where the fluid moves upwards, and it is relatively cold
where the fluid moves downward. However, it is characteristic for the hydrothermal
waves that the locations of the temperature deviation maxima (which can be found
as the lowest points of isotherms) and minima at z < 1, are essentially shifted with
respect to those at z =1. The phase shift between the distributions of θ and vz turns
out to be more then a quarter of the period everywhere, except a thin region near
the surface, which gives a small contribution in 〈vzθ〉xyz, because vz is small near the
interface. That is why the expression for the convective Nusselt number is negative.
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Figure 11. Variations of the energy and the Nusselt number for convective regimes obtained
at fixed horizontal temperature gradient A = 0.05.

The total temperature field T (x, z, 0) is given in figure 10(e). Note that in a
large part of the computational domain, the vertical component of the temperature
gradient is directed upwards (unlike the case shown in figure 8c). This is essential for
the excitation of hydrothermal waves (see Davis 1987). Because the pattern is two-
dimensional, we can define the streamfunction for it in the usual way (figure 10f ). The
intensities of the ‘light vortices’ (where the rotation is counterclockwise) are slightly
larger than those of ‘dark vortices’ (where the rotation is clockwise). Indeed, for the
‘light vortices’, the direction of the liquid motion at the surface coincides with the
direction of the surface-tension gradient. Therefore, this kind of vortex is supported
by the mean temperature gradient. The locations where the liquid has the maximum
vertical velocity can be seen in figure 10(d) as the centres of the light spots of the
velocity field.

Summarizing the results of this and previous sections, let us mark the distinctive
behaviour of the convective patterns near the stability boundary of the return flow.
This analysis shows that in the domains of stable roll patterns with α = 0◦ and α =90◦,
in spite of the temperature gradient A increasing and bringing energy to the system,
the amplitude of the convective component of the fluid motion decay up to zero
on the instability boundary (figure 7). On the opposite side of the stability domain,
the convective component of the fluid motion begins to rise again with increasing A

(figure 9), from the instability boundary of the hydrothermal waves. The excitation
of all the instability modes is supercritical.

Also, we carried out the computation for the fixed value of the horizontal temper-
ature gradient A= 0.05, and for changing Marangoni number. Results are presented
in figure 11. Simulations have been performed in the computational domain with
Lx =7.7 and Ly = 6.01. It turns out that there is a certain region of parameters, where
the hydrothermal waves are modulated in space and in time. In this parameter region,
we have observed a new type of pattern, the oscillating flow, which is denoted by
squares in figure 11. Unlike the previous case of pure hydrothermal waves, the Nusselt
number and the energy change with time. The squares show the mean value of the
integral characteristics after averaging over the time period T . The periodic oscillations
of the integral characteristics are almost sinusoidal. The surface temperature fields
for the main four phases of these oscillations corresponding to time instance T/4,
T/2, 3T/4, T are shown in figures 12(a)–12(d) (Ma = 1310, A= 0.05).
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Figure 12. Structures of phases of the oscillating flow at Ma =1310, A = 0.05. (a) T/4; (b) T/2;
(c) 3T/4; (d) T ; (e) isotherms θ (x, y, z = 1) of the stationary regime at Ma =1420, A =0.05;
(f ) Fourier spectrum.

With the increase of the Marangoni number, this flow turns into the stable regime
of spatially modulated travelling hydrothermal waves which are shown by triangles
in figure 11. The structure of this regime obtained at Ma =1420, A= 0.05 is shown
in figure 12(e,f ).

6.3. Hexagonal cells versus rolls

In this section, we determine the existence domains for the rolls predicted by the
linear theory and for hexagonal cells which we expect should arise as well. We are
interested in how hexagonal cells and rolls share the parameter plane (Ma, A). Also,
we are going to explore the transition between these structures.

For this purpose, we construct the computation domain suitable for both rolls and
hexagonal cells. The size of the computation domain is determined by the critical
wavenumber found in the linear theory for the rolls ordered along the flow (α =0). So,
we fix the aspect ratio along the y-axis as ly = 4π/kc. In order to allow the existence of

the hexagonal cells, we can choose the aspect ratio along the x-axis as lx = 4π/
√

3kc.
For reasons which we explain later, we carry out the calculation with the aspect ratio
Lx = 2lx and Ly = ly .
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Figure 13. Different structures arising from the initial state with ‘equal’ amplitudes. Isotherms
on the surface of the layer are shown above the graph. Spatial resolution 64 × 64 × 16 has
been used.

The results of these simulations are shown in figure 13. It turns out that for
a relatively small Marangoni number, different patterns arise in the corresponding
domains of the parameter plane (Ma, A). The region of roll existence is adjoint to the
corresponding instability boundary for rolls with α = 0◦. All the roll-like disturbances
within the range 0◦ <α < 90◦ start to grow in the domain between the lines α = 0◦ and
α = 90◦. Thus, the modes which are necessary for forming a hexagonal cell become
unstable to the left of the boundary where the rolls appear. Therefore, the region of
hexagon existence is located to the left of the region occupied by rolls in figure 13,
i.e. in the direction of decreasing horizontal temperature gradient.

Depending on the initial state, two kinds of hexagonal cell appear which are
differently aligned with respect to the main flow. For the sake of convenience later
on, we call them H1 and H2 (see figure 13). Typically, we have chosen the initial

state with equal amplitudes of all Fourier harmonics, θ̂ (p,m,n)(t = 0) = 0.1 in (18) as the
initial values. Such a choice provides the ‘equal opportunities’ for the future evolution
of each of them. At the top of the figure, the isotherms on the surface of the layer for
different patterns are presented. The light spots show high-temperature regions where
the fluid goes up, whereas the dark ones present the low-temperature regions where
the fluid sinks. Hexagonal cells H2 are deformed because calculations are carried out
in the domain with the ratio of sizes appropriate for hexagons of the first kind, H1.
The intention to obtain both kinds of hexagon is the reason we chose to double the
size of the calculation domain. It is the smallest domain where both kinds of the
hexagon can be obtained.

In order to obtain non-deformed hexagons, we have used different sizes of calcula-
tion domains. In figure 14, the structures of these two kinds of hexagonal cell, H1 and
H2, are shown in more detail. In the former case, the size of the cell is Lx = 2lx , Ly = ly ,
in the latter case Lx = lx , Ly = 2ly . Each structure is represented by the superposition
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Figure 14. The upper diagrams show the structure of the hexagonal cells ordered along and
across the main flow. The basic return flow on the surface is directed to the left. The lower
diagrams show superpositions of the wavevectors which form the hexagonal cells.
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√
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√
3kc

Table 1. Geometrical parameters of two kinds of hexagon.

of three rolls with wavevectors k1, k2, k3 (see table 1) such that the angles between
each two wavevectors are equal to 120◦:

θ(x, z) = f (z)Re

[
3∑

j=1

exp(ikj · x)

]
.

These two kinds of pattern correspond to two different orientations of the hexagonal
cell with respect to the direction of the main flow. Wavenumber kc for cells H1 and
H2 has been chosen according to the linear theory for the rolls with α = 0◦ and
α = 90◦, respectively.

6.4. Transitions between patterns

The fact that in our previous calculation (§ 6.3) in the computation domain suitable
for H1, hexagons H2 arise also and are located closer to the instability boundary
(figure 13) gives some reason to consider the evolution of these two kinds of hexagon
separately. We are also interested in considering other regimes which could survive in
these domains at different values of control parameters (Ma, A).

It is known that in the absence of the horizontal temperature gradient A= 0, the
square patterns replace the hexagonal cells when the Marangoni number increases.
This was demonstrated numerically by Bestehorn (1996) and confirmed experimentally
by Nitschke & Thess (1995).

We fix the ‘double’ aspect ratio as was done for hexagons formerly (figure 14).
The double size provides a wider variety of the regimes permitted in the domain (in
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Figure 15. The diagram of the transitions between patterns which occur with the temperature
gradient changing. Calculations have been performed in the computational domain suitable
for hexagons H1. Arrows show the direction of the temperature gradient changing. Solid,
dashed and dot-dashed lines are the instability boundaries for rolls with different angles α.

comparison with the domain occupied by a single hexagon only). Figures 15–17 show
two series of calculations which have been performed in the double computation
domains suitable for H1 and H2.

First, consider the evolution of the convective flows in the computation domain sui-
table for H1 by changing the horizontal temperature gradient (figure 15). The com-
putation domain was constructed using the critical wavenumber kc given by the linear
theory for the curve α = 0◦ at the corresponding Marangoni number (as was descri-
bed in the previous section). We have carried out three series of simulations fixing
Marangoni number (sections at Ma = 120, 200, 400) and changing the temperature
gradient only. In all these cases, we started from roll patterns with α = 0◦ near the
boundary of their stability and moved in the direction of decreasing horizontal
temperature gradient A (arrows to the left). During this process, every new regime
was used further as an initial state for the next convective structure. When we had
achieved the point of zero temperature gradient A= 0, we ‘turned back’ and started to
monitor the flow evolution under increasing horizontal temperature gradient (arrows
to the right). Eventually, we came back to the roll patterns again. Note that the
calculations with increasing and decreasing values of A have been done for the same
value of the Marangoni number. The forward and back sequences of the regimes
are different and therefore, for convenience, we have shown them on figure 15 on
different lines. The location of the forward transition point from rolls to a three-
dimensional cellular pattern generally does not coincide with the point of the inverse
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transition from a three-dimensional pattern to rolls. Different signs in figure 15 stand
for different convective flows. Black squares stand for rolls. The extreme left-hand
square demonstrates the leftmost point of the rolls domain where they are still
stable. Triangles (down) stand for hexagonal cells H1 and every extreme right-hand
triangle shows the rightmost point where hexagonal patterns were obtained. Also, the
instability boundaries for rolls with angle α equal to 0◦, 60◦ and 90◦ are shown in
figure 15. So we can see that for relatively small values of the Marangoni number,
the transition areas from longitudinal rolls R to hexagons H1 and back are located
not far from the instability boundary for rolls α = 60◦, which form the hexagonal
pattern. To the right of this boundary and up to the instability boundary, there are
longitudinal rolls with α = 0◦ only.

Note that the critical wavenumbers for longitudinal rolls with α = 0◦, at section
Ma = 120, 200, 400 are kc = 2.15, 2.4, 3.1, respectively. Thus, the area of the
computational domain, constructed on these wavenumbers, Sxy = LxLy = 32π2/(

√
3k2

c )
decreases (39.4, 31.7, 19, respectively) with the increase of the Marangoni number.

During the calculations in these domains, besides hexagonal and roll cells, three
different kinds of quadrangle cell have been obtained (figure 18). Pattern Q1 (stars
in figure 15) contains four cells in the computation domain. Pattern Q2 (crosses
in figure 15) contains two cells, and pattern Q3 (triangles with vertices upward in
figure 15) contains only one cell. We can see that patterns Q1 and Q2 are observed at
equal Marangoni number but different values of the horizontal temperature gradient
A. Pattern Q3 exists at sufficiently larger Marangoni numbers. We can see that for
horizontal temperature gradient values A< 0.02, the quadrangle cell Q1 at Ma = 200
has an area of about 31.7/4 = 7.9, whereas the cell Q3 at Ma= 400 has an area
of about 19 dimensionless units, that is larger then the previous one for Q1. It is
remarkable that the boundaries of the cells Q1 and Q3 are ordered parallel to the
sides of the computational domain (‘rectangles’), unlike pattern Q2 which has inclined
cells boundaries (‘rhombi’).

All the patterns described above move from the right to the left in the direction of
the surface-tension gradient.

In order to consider the transition between longitudinal rolls with α = 0◦ and
hexagons H1 in more detail, we have carried out a simulation at a fixed Marangoni
number, Ma= 115, changing horizontal temperature gradient A only. The results are
shown in figure 16. The vertical axis presents the kinetic energy of the fluid motion,

Ek =
1

2Vxyz

∫ (
v2

x + v2
y + v2

z

)
dx dy dz.

We have observed gradual changes of the structure from a hexagonal pattern
toward a roll pattern with gradient A increasing. The black squares stand for the pure
roll patterns. Triangles stand for the transition patterns containing closed isolines. We
should note that for the range of 0.023<A< 0.025, for each temperature gradient
value there are two branches of solutions. The bottom branch presenting pure rolls is
unstable, i.e. it can be destroyed by an arbitrary little perturbation having hexagonal
components, and finally the solution comes to the upper hexagonal branch. This
transition scenario agrees with the result of the weakly nonlinear analysis presented
in § 4 (see also Malomed et al. 1994).

The results of calculations that were carried out in the computational domain
suitable for hexagons H2 is presented in figure 17. The wavenumber which is
needed for constructing this computational domain is taken equal to the critical
wavenumber on the instability boundary for the rolls with α = 90◦ which take part
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Figure 16. The transition between hexagons H1 and rolls which occur with the temperature
gradient changing (Ma = 115).

in forming hexagonal pattern H2. In this case, we have also done three series
of simulations corresponding to three different values of the Marangoni number
(sections at Ma= 130, 200, 400). Similarly to the previous case, figure 17 shows the
transitions between different patterns, which take place under the temperature gradient
A decreasing and then increasing. We can see again that the forward transition taking
place at Ma = 130 from the rolls with α =0◦ (squares in figure 17) to the hexagons H2
(rhombi in figure 17) under temperature gradient decreasing and back transition with
the temperature gradient increasing occur in different ways. At the forward transition,
we observe that longitudinal stationary rolls with α =0◦ turn into hexagonal patterns
near the instability boundary for rolls with α = 60◦ (dot-dashed line). Under the
back transition, first, hexagons H2 turn into oblique drifting rolls with α � 30◦ (dots
in figure 17) and then they turn into longitudinal rolls with α = 0◦. So, there is a
hysteresis domain between the rolls with α = 0◦ and hexagons H2.

Thus, with the growth of the temperature gradient A, we observed the transition
from moving hexagonal patterns to longitudinal rolls and then to the parallel return
flow.

The next series of calculations has been carried out at Ma = 200. Under decreasing
temperature gradient A, the rolls with α = 0◦ turn into the quadrangles Q2
approximately at the instability boundary for rolls with α =60◦ (forward transition).
Then, quadrangle cells Q2 turn into cells Q1. This flow maintains that configuration
until gradient A disappears. Under the back transition, quadrangle cells Q1 turn into
hexagons H2 which then turn into oblique drifting rolls with α � 30◦ and eventually
they again become stationary longitudinal rolls with α = 0◦.
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Figure 17. The diagram of the transitions between patterns which occur with the temperature
gradient changing. Calculations have been performed in the computational domain suitable
for hexagons H2. Arrows show the direction of the temperature gradient changing. Solid,
dashed and dot-dashed lines are the instability boundaries for rolls with different angles α.

At Ma = 400, we have obtained only a transition between longitudinal rolls with
α = 0◦ and quadrangle cells Q2. We have observed the quadrangle Q2 until gradient
A disappears.

During the calculations in this domain, we have obtained the same set of patterns as
in the first case except for quadrangle pattern Q3 and the additional roll pattern with
α = 30◦, which takes part in forming hexagons H2. Perhaps this is beacuse pattern
Q3 requires a rectangle computational domain with the x-boundary side longer then
the y-boundary side. In the case of the second computational domain it is not so.

Figures 18 and 19 show the structures of the convective flows which have been
obtained in simulations presented in figures 15 and 17. They show isotherms θ(x, y, 1)
on the surface of the layer for different convective patterns. All convective structures
are distorted by the main return flow.

Note that we cannot be sure that structures presented in the last two figures include
all the patterns which are possible in this parameter domain. All these patterns have
been obtained using particular initial conditions. In both series of experiments, we star-
ted from longitudinal rolls with α =0◦. Most probably that it is only one possible
scenario of the transitions between patterns. All described patterns move to the left
according to the direction of the main flow.

As a result of these two series of calculations presented in figures 15 and 17,
we can see that the regions of stability of the hexagonal patterns are located at a
lower Marangoni number than those of the quadrangle patterns. Under increasing
Marangoni number and a fixed value of the horizontal temperature gradient A,
hexagonal patterns turn into quadrangles. Qualitatively, this result is in accordance
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Figure 18. Convective patterns obtained in the calculation domain suitable for hexagons
H1, and their Fourier spectra.

with the result of Bestehorn (1996) that in the absence of the temperature gradient A,
the domain where the quadrangles (squares) are stable is located above the stability
domain of the hexagonal patterns.

6.5. Simulations with the large aspect ratio

All the simulations in the previous sections were performed in computational domains
of size commensurable with the convective structures, i.e. they contained only a few
cells. In order to consider the influence of the temperature gradient on the possible
mutual coexistence of different regimes and to check our previous results, we have
carried out simulations in a large domain Lx = Ly = 20 using the spatial resolution
1282 × 16. Here we list the possible patterns, compatible with the geometry of the
domain and boundary conditions. The set of the convective regimes which have been
observed for different parameters values is shown in figures 20–22.

In the absence of the horizontal temperature gradient (A = 0), the appearing
hexagonal patterns have a slightly non-equilateral form. Hexagons turn out to
be ordered along the axis having a slope with respect to the boundaries of the
computational domain. It is the result of the square shape of the computational
domain, Lx = Ly . A perfect hexagonal pattern can be obtained in the domain with
non-equilateral sides (as it was done in § 6.3). In the presence of a little horizontal
temperature gradient, this convective structure does not change. The pattern of
this type is presented in figure 20a (Ma =200, A = 0.01). This kind of hexagonal
pattern can be considered as slightly oblique hexagons H1. Later on we call them
OH+. Computation carried out for parameters Ma = 150, A= 0.02, using other initial
conditions, led to oblique hexagonal patterns with the opposite slope with respect
to the x-axis corresponding to the direction of the horizontal temperature gradient
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Figure 19. Convective patterns obtained in the calculation domain suitable for hexagons
H2, and their Fourier spectra.

(A · ex). It is the pattern in figure 20(a) reflected with respect to the x-axis (we call them
OH−). An example of non-oblique hexagonal patterns H1 was obtained for larger
horizontal gradient values Ma = 140, A= 0.025 (figure 20b). Owing to the action of
the relatively stronger horizontal temperature gradient, hexagons are ordered along
the x-axis. Under temperature gradient A growing further, they turn into stationary
longitudinal rolls with α = 0 (as was described in § 6.4, figure 16).

The next convective structure that we consider is the pure hexagonal pattern
H2 (figure 20c), which has been obtained for parameters Ma =140, A = 0.027. The
region where this pattern can be obtained (if we start from the initial date with
‘equal’ amplitudes as was described in § 6.3) is located at the relatively larger values
of the horizontal temperature gradient than the analogous region of H1. Recall
that the transverse rolls with α = 90◦ take part in forming hexagonal pattern H2,
whereas longitudinal rolls α = 0◦ form pattern H1. Therefore, in the structure H2, the
convective cells are ordered parallel to the y-axis, unlike structure H1.

For some values of Ma (often coinciding with the area of the appearance of
H2), we have observed irregular patterns, a typical example of which is presented
in figure 20(d). This snapshot of a non-stationary process is obtained at parameters
Ma = 150, A= 0.0265. We can see shapeless cells which experience oscillation of their
form. Some of the cells merge and split. At other parameter values, we can find
structures with more visible organization of the cells along the y-axis (that is intrinsic
for the structure H2), but also with irregular time behaviour of the cells. The example
for parameters Ma = 200, A= 0.028 is shown in figure 21(a). Owing to the apparently
chaotic oscillations of the shape of some convective cells, the whole pattern is chaotic
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Figure 20. Isotherms of various patterns with Lx = Ly = 20. (a) Structure OH+ (Ma =
200, A=0.01); (b) structure H1 (Ma = 140, A=0.025); (c) structure H2 (Ma = 140, A=0.027);
(d) structure obtained at Ma =150, A= 0.0265.

as well. The integral characteristics like the energy and the Nusselt number of these
patterns also experience chaotic oscillations.

The area of stable rolls is situated to the right of the region of stable hexagons
H2 and the unstable irregular patterns. Depending on parameters (Ma, A) and initial
conditions, we have observed roll patterns having different slope α with respect to the
x-direction. In accordance with the results of § 6.4 (figures 15, 17), the longitudinal
stationary rolls with α = 0◦ are located near the boundary of the return flow stability.
Between the areas of the existence of the hexagonal patterns and the longitudinal
rolls, there is a stability domain of the oblique rolls shown in figure 21(b). They
are inclined to the x-direction on the angle which is just the same as for hexagonal
patterns in figure 20(a), which has been used as the initial state. We have to recall that
in the previous section we have also obtained oblique rolls, but they have another
inclination angle (figure 19). This difference is caused by the difference in the size and
in the geometry of the computational domains.

Using hexagons H2 as the initial state and increasing temperature gradient A, we
have obtained the structure shown in figure 21(c), half of which is presented by the
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Figure 21. Isotherms of various patterns with Lx = Ly =20. (a) Ma = 200, A=0.028;
(b) Ma = 150, A=0.0285; (c) Ma =140, A= 0.032; (d) Ma =200, A= 0.001.

oblique rolls with positive inclination angle and the half consists of rolls with negative
inclination angle of the same modulus. This convective pattern can be considered as
a system of inclined roll domains separated by domain walls. This pattern has been
obtained for the values of parameters Ma =140, A = 0.032 where in the computational
domain suitable for hexagons H2 we had oblique rolls (see figure 17).

The regions of stability of the hexagons H1, H2 and oblique rolls are compatible
with the results obtained in § 6.4 for the computational domains with small aspect
ratio (figures 15 and 17). In accordance with these results (figure 17), the oblique rolls
stability domain is contained between stability domains for hexagons and longitudinal
rolls. However, in the case of a large aspect ratio, the rolls have a smaller inclination
angle α. To the right of the region of oblique rolls (in the direction of increasing
horizontal temperature gradient values), there is the stability domain of stationary
longitudinal rolls with α = 0◦ which adjoin the boundary of the return flow instability.

It is known that in the absence of the horizontal temperature gradient A, there are
convective structures containing some defects or domains of different patterns. An
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Figure 22. Isotherms of the pattern containing quadrangle and hexagonal structures with
Lx = Ly = 20. Ma = 220, A= 0.01.

example of such a structure presenting coexisting hexagonal pattern and quadrangles
is shown in figure 21(d). In the presence of a moderate temperature gradient A,
the situation remains unchanged (figure 22) and we can still observe the structure
of mixed hexagonal and quadrangle cells. However, on further increasing gradient
A, this structure is destroyed, and it is replaced with an inclined hexagonal pattern
similar to figure 20(a).

Note that the stability domains of the different regimes described above can overlap
each other and there are parameter values permitting multistable states. It must also
be noted that calculations (also as in the results of § 6.4) have shown that the stability
domain of the hexagonal patterns is separated from the domain of stable return flow
by the strip of stable roll patterns. The existence of this rolls strip is the result of the
anisotropy of the problem under consideration, owing to the action of the horizontal
temperature gradient. Recall that there is no such rolls strip for the pure problem
without horizontal gradient A= 0 and the hexagonal patterns bifurcate subcritically
from the stability boundary.

In conclusion, we consider the phase velocity of the different hexagonal patterns
mentioned above. It is interesting to find out how the convective patterns move
with respect to the direction of the temperature gradient A. The direction of the
phase velocity can give the answer to this question. We suppose that the stationary
convective pattern is constructed from the rolls ∼ exp(ikj (rj − vt)) moving in the
same direction and with the same phase velocity v

ωj = kj · v.

Here, j is the number of rolls constructing the pattern. In order to determine the
direction of the phase velocity v = (vx, vy) in the (x, y)-plane it is enough to consider
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Planform vx vy Nu Ek

OH+ −0.186 −8.59 × 10−3 2.8 × 10−3 0.116
OH− −0.186 8.59 × 10−3 2.8 × 10−3 0.116
H1 −0.157 0 2.741 × 10−3 0.115
H2 −0.166 0 2.745 × 10−3 0.115

Table 2. Comparison of the phase velocities, Nusselt numbers and energies for four different
hexagonal patterns at Ma = 150, A = 0.02.

only two rolls characterized by (kx, ky):

k1,xvx + k1,yvy = ω1,

k2,xvx + k2,yvy = ω2.

As these two necessary sample rolls, the rolls with maximal values |θ̂ (j )| · exp(i(kj,xx +
kj,yy)) have been chosen. Then ωj can be determined by the following relation:

ωj = − tan−1[Im(θ̂ (j ))/Re(θ̂ (j ))]n − tan−1[Im(θ̂ (j ))/Re(θ̂ (j ))]n−1

�t
,

where �t = tn − tn−1 is the time step of the numerical procedure.
We should emphasize that the structures OH+, OH−, H1 and H2 are simultaneously

stable in a certain region of the parameter plane (Ma, A). For instance, using the
patterns shown in figure 20(a, b, c) as the initial condition, we have obtained all
the above mentioned structures at the point Ma= 150, A= 0.02. For comparison
of the phase velocity values of different hexagonal patterns, we have chosen this
point. As was expected, the convective patterns with little positive OH+ and negative
OH− inclination angle have the same value x-component of the phase velocity
and oppositely directed y-component of the phase velocity. The velocity values are
presented in the table 2. The x-component of the phase velocity of the hexagonal
patterns H1 (figure 20b) and H2 (figure 20c) smaller than velocities of the oblique
hexagons. Other integral characteristics of these four kinds of hexagonal patterns are
almost the same. Note that velocity of the return flow at the surface in this point is
vrf = −0.75, and it is larger then the phase velocity.

The phase velocity of the domain wall at the point (Ma = 140, A= 0.032, figure 21c)
is vx = −0.44 and vy = 0. For oblique rolls (figure 21b), we can find only the normal
component of the phase velocity vn = 7.18 × 10−2.

7. Conclusion
The results of the investigation make clear the important role of the horizontal

temperature gradient on the formation and the development of convective regimes
in a plane liquid layer heated from below. For instance, at the fixed relatively
small temperature gradient across the liquid layer, ruling only by the longitudinal
temperature gradient, we can obtain the hexagonal patterns, the rolls, the parallel
return flow, the hydrothermal waves and other different cellular regimes. So we have
one more additional parameter for the control of the convective flows.
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As a result of the linear stability analysis, three instability modes have been found.
It has been found that the transition from the stable parallel return flow to spatially
periodic flows occurs through the longitudinal rolls (with the axes directed along
the horizontal temperature gradient), drifting rolls moving downstream, or travelling
hydrothermal waves moving upstream depending on the control set of parameters.
It turned out that in the presence of the inclined temperature gradient, the parallel
return flow can be restabilized by the enhancement of the vertical component of the
temperature gradient.

Our calculations in the domains with a small aspect ratio revealed the existence of
two different kinds of hexagonal patterns ordered along and across the direction of
the surface-tension gradient. The latter calculations in the domains with large aspect
ratio have confirmed the existence of two hexagonal patterns and have shown that
hexagonal patterns with inclined orientation of cells are also possible. Also, it was
shown that stationary longitudinal rolls directed along the horizontal temperature
gradient provide better heat transfer across the liquid layer than travelling rolls
transverse to the horizontal temperature gradient. It should be noted that during
all our calculations we have obtained longitudinal rolls more often then transverse
travelling rolls. This observation is similar to the result known for buoyancy convection
where the longitudinal rolls also are preferred (Kelly 1994).

During the simulations, we have observed different kinds of quadrangle patterns
and transitions between them. We have found that the stability region of quadrangle
patterns is located above the region of stable hexagonal patterns, as it is in the
absence of the horizontal temperature gradient. It turned out that in the presence
of the horizontal temperature gradient also there are structures containing defects
or domains of different patterns. Specifically, in the large computational domain,
we have observed coexisting quadrangle and hexagonal cells and regimes pre-
sented by the systems of differently inclined roll domains separated by domain
walls.

It is remarkable that the presence of the horizontal temperature gradient shifts the
existence domain of the cellular patterns in such a way that the domain of stable
return flow states turns out to be surrounded by the various kinds of pure roll patterns
and waves predicted by the linear theory. Except for the region near A=0, where
there is a direct transition from the return flow to hexagonal patterns, the transition
from stable return flow to spatially periodic convective regimes occurs according to
the predictions of the linear theory.

When the present paper was in preparation, we learned about the work of Ueno
et al. (2002) which was the only published experimental work on the thermocapillary
convection with an inclined temperature gradient. The direct quantitative comparison
of our theoretical predictions with the experimental data is impossible because the
experiments are carried out in a cylindrical cavity for silicone oils which have
essentially larger values of the Prandtl number. A computation of convective flows in
a high-Prandtl liquid filling a closed cavity is beyond the scope of the present paper.
Nevertheless, it is remarkable that the same sequence of regimes as that mentioned in
§ 6.4, namely flowing Bénard cells, nearly longitudinal rolls (‘streak convection’) and
the parallel return flow, have been observed in experiments.

We are grateful to Thomas Boeck for his valuable advice on the preparation of the
code treating nonlinear regimes, and to Leonid Braverman who provided us with the
code for the calculation of the linear stability boundaries. This work was partially
supported by the Minerva Center for Nonlinear Physics of Complex Systems.
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Ma Planform Nx Ny Nz EBoeck NuBoeck Eour Nuour

80 HX 64 32 17 68 0.177 68.13 0.177
82 HX 64 32 17 154 0.407 154.39 0.407
86 HX 64 32 17 328 0.879 328.27 0.879
88 DHX 64 32 17 398 1.03 397.62 1.034
90 DHX 64 32 17 440 1.11 439.69 1.110
92 DHX 64 32 17 455 1.11 455.12 1.112
95 R 64 32 17 467 1.13 466.93 1.130

102 R 64 32 17 784 1.87 781.60 1.868
105 TW 64 32 17 1110 2.60 1112.5 2.606
110 TR 64 32 33 2050 4.71 2049 4.71
115 TR 64 32 33 7500 13.8 7586 13.96

Table 3. Comparison of the numerical results with no-slip condition at the bottom.

Planform Nx Ny Nz Nu Ek U (z = 1)

H1 16 16 9 2.6851 × 10−3 0.716740 × 10−1 −0.3244
H1 32 32 9 2.4944 × 10−3 0.67060 × 10−1 −0.3246
H1 32 32 17 2.4951 × 10−3 0.67076 × 10−1 −0.3246
H1 65 65 33 2.4951 × 10−3 0.67076 × 10−1 −0.3246
H2 16 16 9 2.7976 × 10−3 0.11565 −0.7484
H2 32 32 9 2.6141 × 10−3 0.11066 −0.7487
H2 32 32 17 2.6141 × 10−3 0.11066 −0.7487
H2 64 64 33 2.6141 × 10−3 0.11066 −0.7487

Table 4. Comparison of the integral characteristics of the flow for grids having different
numbers of the mesh points.

Appendix. Validation of the numerical procedure
For validation of the code simulating the convective regimes we have reproduced

the result presented in Boeck (2000, appendix D) for Marangoni convection at a low
Prandtl number. This case corresponds to A= 0, 〈∂xp〉 =0, 〈∂yp〉 =0. The results of
the comparison are shown in table 3 for different convective structures. Calculations
have been performed for Prandtl number Pr= 0.005 in the computational domain
Lx = 4π/kc, Ly = 4π/

√
3kc, where kc = 1.9929.

For definition of the energy of the fluid motion E, see Boeck (2000). The definition
of the Nusselt number Nu is given in § 6.1. Here, HX stands for hexagonal patterns;
DHX deformed hexagons; R steady rolls; T W denotes travelling waves; TR travelling
rolls (for more detail see Boeck 2000).

In order to check the convergence of the numerical procedure for our problem,
we carried out a calculation of the main integral characteristics on a sequence of
grids having different numbers of mesh points. Computations were performed for
hexagonal pattern H1 at the horizontal temperature gradient A= 0.01, Marangoni
number Ma = 130, and for hexagonal pattern H2 at parameters A= 0.02, Ma = 200.
In the first case, the size of the computational domain was Lx = 2lx , Ly = ly and
Lx = lx , Ly = 2ly in the second case (parameters lx , ly are given in table 1). The time
step was fixed at �t =0.02.

Every attempt was started with random initial dates. The Nusselt number, the
kinetic energy of the fluid motion and the horizontal velocity on the surface of the
liquid layer are shown as a function of the grid mesh points along the x, y, z directions
(table 4). The integral characteristics are defined in § 5, 6.1 and 6.4.
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